skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Puleo, Lauren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY With rapid environmental change, shifts in migration timing are vitally important for maintaining population stability and have been widely documented. However, little remains known abouthowmigrants are driving these shifts and what factors may influence the effective utilization of these strategies, limiting our ability to accurately assess species- and population-level vulnerability to climate change. The Hudsonian godwit (Limosa haemastica) is an extreme long-distance migratory shorebird that has (1) previously shifted its population-level migration timing and (2) exhibits sex-specific morphological differences. Therefore, we combined over a decade of light-level geolocator tracking data from a single breeding population with a historical predictive model to assess on-going shifts in migration timing while determining the time-shifting strategies utilized by each sex. Surprisingly, we found that godwit departure and arrival timing rapidly shifted 6 days later from 2010-2023 with no differences in timing between the sexes. Despite this change in migration timing, the population has maintained an average migratory duration of 24 days, suggesting that godwits are driving shifts in arrival timing entirely by shifting their nonbreeding ground departure, something rarely documented in long-distance migrants. Yet, we also found that godwits are not shifting their migration timing in the direction predicted by our model, providing evidence that this response may not be adaptive. These results emphasize the urgent need for a more holistic approach to assessing the relative vulnerability of migratory species and the adaptiveness of changes in migration timing. 
    more » « less